
A journey into PostgreSQL logical replication

José Neves - October 2024

The Next Chapter

The journey: prelude
Toggl Track evolved on top of a monolithic
transactional PostgreSQL database.

With an ever-increasing dataset, we started to feel
the need to move away from the transactional -
normalized - data structure to provide the
analytical features that users were asking for.

The journey: the plan
Move it, transform it. Use it.

Leverage logical replication as a means of facilitating close
to real-time transformation of our transactional data. Make it
the source of a CDC pipeline.

We implemented our own logical replication client in
GoLang, using pglogrepl (github.com/jackc/pglogrepl).

The journey: the plan
A major product requirement for our analytic features
was near real-time availability.

Logical replication was our best bet to achieve it. And
while at it, we managed to provide the means to
“liberalizeˮ access to “data changes .ˮ

Later on used to decrease latency in other processes such as
internal BI tools, email notifications, or simply data
propagation from sources of truth to other services.

The journey: the bad turn
Caring for data-changing events - only - turned out to
be a bad turn.

Logical replication streams data that is already
committed.

It won't be rolled back. And DDL changes will not be
there anyway.

The journey: consumption client
While developing our consumption client, our line of thinking was: no use
keeping track of events that donʼt change data.

Like transaction begins and commits.

We cared only for Inserts, updates, deletes,
and maybe truncates.

Spoiler! It was a crappy idea.

Developing our
Consumption Client

Logical replication slot
The slot is persistent, regardless of an active connection. And will store the
consumption status, using two offsets, restart, and flush LSN.

LSNs are pointers to given locations in the WAL. Logical replication clients
must periodically push consumption status to update the slot.

* https://www.postgresql.org/docs/current/datatype-pg-lsn.html

LSN Examples
BEGIN 4/98EE65C0
INSERT 4/98EE65C0
UPDATE 4/98EE66D8
UPDATE 4/98EE6788
COMMIT 4/98EE6830

START TRANSACTION;
INSERT INTO track (description, duration) VALUES (‘Reading’, 360000);
UPDATE track_total SET duration = duration + 360000;
UPDATE user SET entries = entries + 1;
COMMIT;

BEGIN 4/98EE6950
UPDATE 4/98EE6AD8
UPDATE 4/98EE6D28
UPDATE 4/98EE6DD8
COMMIT 4/98EE6F30

BEGIN 4/98EE6F68
INSERT 4/98EE6F68
COMMIT 4/98EE7040

START TRANSACTION;
UPDATE track SET duration = duration + 360000;
UPDATE track_total SET duration = duration + 360000;
UPDATE users SET entries = entries + 1;
COMMIT;

INSERT INTO users (email, password) VALUES (‘@.com’, ‘...’);

Without Concurrency
BEGIN LSN000001
INSERT LSN000002
UPDATE LSN000003
UPDATE LSN000004
COMMIT LSN000005
BEGIN LSN000006
INSERT LSN000007
UPDATE LSN000008
UPDATE LSN000009
COMMIT LSN000010
BEGIN LSN000011
INSERT LSN000012
UPDATE LSN000013
UPDATE LSN000014
COMMIT LSN000015

T1

T2

T3

BEGIN LSN000001
INSERT LSN000002
UPDATE LSN000003
UPDATE LSN000004
COMMIT LSN000005
BEGIN LSN000006
INSERT LSN000007
UPDATE LSN000008
UPDATE LSN000009
COMMIT LSN000010
BEGIN LSN000011
INSERT LSN000012
UPDATE LSN000013
UPDATE LSN000014
COMMIT LSN000015

Without Concurrency

With Concurrency
BEGIN LSN000001
INSERT LSN000002
UPDATE LSN000008
UPDATE LSN000014
COMMIT LSN000015
BEGIN LSN000003
INSERT LSN000004
UPDATE LSN000005
UPDATE LSN000009
COMMIT LSN000011
BEGIN LSN000006
INSERT LSN000007
UPDATE LSN000010
UPDATE LSN000012
COMMIT LSN000013

BEGIN LSN000001
INSERT LSN000002
BEGIN LSN000003
INSERT LSN000004
UPDATE LSN000005
BEGIN LSN000006
INSERT LSN000007
UPDATE LSN000008
UPDATE LSN000009
UPDATE LSN000010
COMMIT LSN000011
UPDATE LSN000012
COMMIT LSN000013
UPDATE LSN000014
COMMIT LSN000015

T1

T2

T3

With Concurrency

Concurrency

INSERT LSN000002
INSERT LSN000004
UPDATE LSN000005
INSERT LSN000007
UPDATE LSN000008
UPDATE LSN000009
UPDATE LSN000010
UPDATE LSN000011
UPDATE LSN000014

As we were intentionally disregarding transactions, all we had to work with
were data-changing events and their offsets.

Log:

INSERT LSN000004
UPDATE LSN000005
UPDATE LSN000009
INSERT LSN000007
UPDATE LSN000010
UPDATE LSN000014
INSERT LSN000002
UPDATE LSN000008
UPDATE LSN000011

Replication Stream:

INSERT LSN000002
UPDATE LSN000008
UPDATE LSN000011
INSERT LSN000004
UPDATE LSN000005
UPDATE LSN000009
INSERT LSN000007
UPDATE LSN000010
UPDATE LSN000014

Operation Order:

Fast forwarding…
We attempted to live with the conditions that
we found outside dev environments.

A mix of bad assumptions, the ideal
conditions for confusion due to our first use
case (summing up tracked time / commutative
property), and lack of knowledge about logical
replication inner works led to dark times
trying to figure out why our brand new OLAP
data was - sometimes - inconsistent.

INSERT LSN000002
INSERT LSN000004
UPDATE LSN000005
INSERT LSN000007
UPDATE LSN000008
UPDATE LSN000009
UPDATE LSN000010
UPDATE LSN000011
UPDATE LSN000014

+1
+3
-3+1
+2
-1+2
-1+4
-2+1
-1+3
-1+2

10

+1
-3+1
-1+2
+3
-1+4
-1+3
-1+2
-2+1
+2

10

Bad: Assuming incremental LSNs

BEGIN LSN000001
INSERT LSN000002
UPDATE LSN000005
COMMIT LSN000006

BEGIN LSN000003
UPDATE LSN000004
UPDATE LSN000007
COMMIT LSN000008

T1 T2 INSERT LSN000002
UPDATE LSN000005
UPDATE LSN000004
UPDATE LSN000007

We assumed that LSNs were incremental cross-transactions.

Every logical replication event comes with an LSN offset which corresponds
to a location in the WAL, but logging happens concurrently.

Bad: Assuming incremental LSNs

INSERT LSN000002
UPDATE LSN000005
UPDATE LSN000004
UPDATE LSN000007

We first attempted to solve the issue by tracking the current LSN and
discarding data with offsets smaller than our current position. We were
under the wrong impression that we would have incremental LSN offsets.

In this example by filtering for LNS > “5ˮ we would
discard the first data event from the next transaction.

Bad: Commiting ops offsets

INSERT LSN000002
UPDATE LSN000005
UPDATE LSN000004
UPDATE LSN000007

After figuring out that our data events presented “out-of-orderˮ offsets. We
fell into another nuance when we stopped discarding data based on
expecting an incremental offset:
We would duplicate it on reconnection, by committing operation offsets.

If our logical
replication
client exited at
“5 ,ˮ we would
commit LSN
“5ˮ to pg.

INSERT LSN000002
UPDATE LSN000005
INSERT LSN000002
UPDATE LSN000005
UPDATE LSN000004
UPDATE LSN000007

But on
reconnection we
would receive the
last transaction all
over, duplicating
data.

Key points

✓ Logical replication works over TCP

✓ Only COMMIT LSN offsets are
incrementally-sequential. And only
committing that offset to the
replication slot will mark the
transaction as consumed.

A few key points became clear laying the path to a proper implementation:

BEGIN LSN000001
INSERT LSN000002
UPDATE LSN000005
COMMIT LSN000006

BEGIN LSN000003
UPDATE LSN000004
UPDATE LSN000007
COMMIT LSN000008

T1

T2

Key points
✓ The replication stream data is sorted data by

transaction end offsets

✓ When we commit LSN offsets that pertain to
mid-transaction events, pg will resent the
whole transaction again upon reconnection.

✓ Events for a given transaction are always
streamed together, regardless of log
positioning.

BEGIN LSN000001
INSERT LSN000002
UPDATE LSN000005
COMMIT LSN000006

BEGIN LSN000003
UPDATE LSN000004
UPDATE LSN000007
COMMIT LSN000008

Key points
BEGIN LSN000001
INSERT LSN000002
UPDATE LSN000005
COMMIT LSN000006

BEGIN LSN000003
UPDATE LSN000004
UPDATE LSN000007
COMMIT LSN000008

T1

T2

Committing offset “6ˮ doesnʼt prevent data in
the next transaction from being sent.

All transaction events are resent upon
reconnection if the offset that we committed
to the replication slot is not the transaction
end - or bigger.

Conclusion
By always committing the transaction end
LSN we make sure that we process all
data-changing events respecting their
transactional integrity.

Only committing the appropriated offset
will allow us to correctly manage the slot
state. That is, without additional stateful
logic on the client side.

The Next Chapter

Our vision
The CDC pipeline created by our logical
replication client became the source of data
for many of our endeavors:

● Generalist data aggregations.
● User-generated reporting.
● Real-time business intelligence

reporting.
● Our authorization system.

Our vision
On top of our CDC pipeline, we
can then achieve whatever
transformations are needed.

Scale horizontally and, if we
choose to, segregate by feature
or general domain.

How itʼs going: domain segregation
To better scale, we also started decoupling domains from our main
service.

As a result, our authorization system needed to source data from different
DBs:

● Authorization (roles, permissions, and their relations to users).
● Subscriptions (plans, features, status).
● Remaining transactional data (subject to business logic).

How itʼs going
As we split domain
responsibilities into
different services,
more sources of data
were added.

How itʼs going: domain segregation
Dealing with logical
replication inner works
was just the beginning
of the journey.

Authorization use-case
Our freshly developed CDC couldnʼt
look better to achieve this goal.

We figured that we could simply
ingest data from all three sources
and pre-compute user session data.

We donʼt want users to have to wait
very long for their 50k project list to
load.

Authorization use-case
Pre-computed Sessions

Will tell us what workspaces a user has access to, with which permissions,
and the projects that he can see in them.

Behind the scenes, our OLAP transformation is pre-generating user
sessions by applying subscription, authorization, and business logic to data
changes.

Authorization use-case
Sessions are expected to be updated fast. Users
won't want to wait very long for their newly created
project to be available for use.

Thatʼs challenging.

Especially if you have users with 100k project lists.

Tips & Tricks

Cross our implementations, while striving for near “real-timeˮ data
transformations, we collected a few doʼs and donʼt doʼs.

Tips & Tricks: Embrace duplication
While the proper use of LSN event offsets fully prevents data loss, it doesnʼt
prevent data duplication. On plug-off events, it will happen.

Embrace that possibility. Take advantage of event atomicity on the OLAP
transformation and make sure that the operations are idempotent.

Tip?

Use of an updated timestamp in your transactional tables. Make sure that
every change correctly updates it (ie.: through triggers).
And make use of it in your transformations to dedup.

Tips & Tricks: Bulk updates
Processing data changes individually is challenging.

Prepare your pipeline to deal with events in bulk.

Tip?

Add a small delay in your data collection and bulk upload changes.
Ingest and transform data in bulk.
Use upsert to keep it a single operation.

Tips & Tricks: Bulk updates
INSERT INTO transformation (
 user_id,
 total_time,
 updated_at
)
SELECT
 (d->>'user_id')::int AS user_id,
 (d->>'total_time')::int AS total_time,
 (d->>'updated_at')::timestamp without time zone AS updated_at
FROM JSON_ARRAY_ELEMENTS($1::jsonb) d
ON CONFLICT ON CONSTRAINT transformation_pkey
DO UPDATE SET
 total_time = excluded.total_time,
 updated_at = excluded.updated_at
WHERE
 transformation.updated_at <
 excluded.updated_at;

Tips & Tricks: Statement triggers
If we update multiple rows, the transformation will run multiple times with
row-based triggers. Make sure that logic uses statement changes instead.

Tip?

Use FOR EACH STATEMENT triggers to the detriment of FOR EACH ROW
triggers. If you must use row triggers, use conditioning to make sure that the
transformation is only executed if the change is relevant to it.

Tips & Tricks: Statement triggers
CREATE TRIGGER after_update AFTER UPDATE ON transformation
 REFERENCING NEW TABLE AS new_table OLD TABLE AS old_table
 FOR EACH STATEMENT EXECUTE FUNCTION olap.update_team_goals();

CREATE OR REPLACE FUNCTION olap.update_team_goals() RETURNS trigger LANGUAGE plpgsql AS $$
 BEGIN
 WITH changes AS (

SELECT t.team_id, SUM(new_table.total_time - COALESCE(old_table.total_time, 0)) AS total_time
FROM relations.user_teams t
JOIN new_table ON t.user_id = new_table.user_id
LEFT JOIN old_table ON new_table.user_id = old_table.user_id
GROUP BY t.team_id

)
 UPDATE olap.team_goals tg SET total_time = total_time + changes.total_time
 FROM changes WHERE tg.team_id = changes.team_id;

 RETURN NULL;
 END;
$$;

Tips & Tricks: Inclusive Indexes
When creating OLAP structures from normalized data changes, you will find
yourself looking into relationship tables to find parent ids, for instance.

Using inclusive indexes saves an extra trip to the table to retrieve the
information itself.

Tips & Tricks: Inclusive Indexes
CREATE SCHEMA relations;
CREATE TABLE relations.user_teams (
 user_id integer NOT NULL,

team_id integer NOT NULL,
 CONSTRAINT user_teams_pkey PRIMARY KEY (user_id, team_id)
);

INSERT INTO relations.user_teams (user_id, team_id)
SELECT (random() * 10000)::int AS user_id, (random() * 1000)::int AS team_id
FROM generate_series(1, 1000000)
GROUP BY 1, 2;

SELECT user_id, COUNT(1) FROM relations.user_teams GROUP BY user_id ORDER BY 2 DESC LIMIT 1;

CREATE INDEX simple_user_index ON relations.user_teams (user_id);
EXPLAIN (ANALYSE, VERBOSE) SELECT team_id FROM relations.user_teams WHERE user_id = 1560 ;

CREATE INDEX inclusive_user_index ON relations.user_teams (user_id) INCLUDE (team_id);
EXPLAIN (ANALYSE, VERBOSE) SELECT team_id FROM relations.user_teams WHERE user_id = 1560 ;

Tips & Tricks: Inclusive Indexes
EXPLAIN (ANALYSE, VERBOSE) SELECT team_id FROM relations.user_teams WHERE user_id = 1560
—--
Index Scan using simple_user_index on relations.user_teams (cost=0.42..4.29 rows=95 width=4)
(actual time=12.193..12.220 rows=128 loops=1)
 Output: team_id
 Index Cond: (user_teams.user_id = 1560)
Planning Time: 0.116 ms
Execution Time: 12.253 ms

vs

Index Only Scan using inclusive_user_index on relations.user_teams (cost=0.42..3.19 rows=95
width=4) (actual time=0.077..0.089 rows=128 loops=1)
 Output: team_id
 Index Cond: (user_teams.user_id = 1560)
 Heap Fetches: 0
Planning Time: 0.129 ms
Execution Time: 0.112 ms

Tips & Tricks: Generated Columns
In a situation where sourced data is unstructured, we may want to expose
some properties, so they are directly indexable, for instance.

Make use of generated columns to avoid scanning through unstructured
data at run time.

Tips & Tricks: Generated Columns
CREATE SCHEMA olap;
CREATE TABLE olap.unstructured (

dump jsonb NOT NULL
);

INSERT INTO olap.unstructured (dump)
SELECT JSONB_BUILD_OBJECT('user_id', (random() * 10000)::int, 'total_time', (random() * 1000)::int,
'goal', (random() * 1000)::int + 1) FROM generate_series(1, 100000000);

CREATE INDEX unstructured_gin_index ON olap.unstructured USING GIN (dump);

EXPLAIN (ANALYSE, VERBOSE) SELECT COUNT(1) FROM olap.unstructured
WHERE (dump->>'total_time')::int >= (dump->>'goal')::int;

ALTER TABLE olap.unstructured ADD COLUMN goal_completed boolean
GENERATED ALWAYS AS ((dump->>'total_time')::int >= (dump->>'goal')::int) STORED;
CREATE INDEX goal_completed_index ON olap.unstructured (goal_completed);

EXPLAIN (ANALYSE, VERBOSE) SELECT COUNT(1) FROM olap.unstructured WHERE goal_completed;

Tips & Tricks: Generated Columns
EXPLAIN (ANALYSE, VERBOSE) SELECT COUNT(1) FROM olap.unstructured
WHERE (dump->>'total_time')::int >= (dump->>'goal')::int;
—---
-
Finalize Aggregate (cost=2292731.42..2292731.43 rows=1 width=8) (actual time=74036.280..74047.599
rows=1 loops=1)
 Output: count(1)
 -> Gather (cost=2292731.00..2292731.41 rows=4 width=8) (actual time=74036.072..74047.584
rows=5 loops=1)
 Output: (PARTIAL count(1))...
 -> Partial Aggregate (cost=2291731.00..2291731.01 rows=1 width=8) (actual
time=74029.976..74029.977 rows=1 loops=5)
 Output: PARTIAL count(1)...
 -> Parallel Seq Scan on olap.unstructured (cost=0.00..2270481.00 rows=8500000
width=0) (actual time=0.477..73068.822 rows=10190650 loops=5)
 Filter: (((unstructured.dump ->> 'total_time'::text))::integer >=
((unstructured.dump ->> 'goal'::text))::integer)
 Rows Removed by Filter: 10209350...
Planning Time: 10.810 ms
Execution Time: 74048.038 ms

Tips & Tricks: Generated Columns
EXPLAIN (ANALYSE, VERBOSE) SELECT COUNT(1) FROM olap.unstructured WHERE goal_completed;
—---
-
Finalize Aggregate (cost=692971.65..692971.66 rows=1 width=8) (actual time=3173.567..3195.634
rows=1 loops=1)
 Output: count(1)
 -> Gather (cost=692971.23..692971.64 rows=4 width=8) (actual time=3173.488..3195.625 rows=5
loops=1)
 Output: (PARTIAL count(1))...
 -> Partial Aggregate (cost=691971.23..691971.24 rows=1 width=8) (actual
time=3165.396..3165.397 rows=1 loops=5)
 Output: PARTIAL count(1)...
 -> Parallel Index Only Scan using goal_completed_index on olap.unstructured
(cost=0.57..660276.85 rows=12677752 width=0) (actual time=0.161..2484.704 rows=10190650 loops=5)
 Output: goal_completed
 Index Cond: (unstructured.goal_completed = true)
 Heap Fetches: 0...
Planning Time: 0.234 ms
Execution Time: 3195.690 ms

Tips & Tricks: JSONB
When handling or storing JSON, the binary format can offer advantages, but
using JSONB functions for smaller - looping - sub-operations degrades
performance due to the parsing overhead.

Execute operations in JSON, and cast the result to JSONB instead.

Tips & Tricks: JSONB
EXPLAIN (ANALYSE, VERBOSE) SELECT JSONB_BUILD_OBJECT('obj', obj) FROM (

SELECT JSONB_OBJECT_AGG(user_id, tracked_obj) AS obj FROM (
SELECT user_id, JSONB_OBJECT_AGG(team_id, JSONB_BUILD_OBJECT('total_time', (random() *

1000)::int)) AS tracked_obj FROM (
SELECT (random() * 10000)::int AS user_id, (random() * 10000)::int AS team_id
FROM generate_series(1, 1000000)

) gen
GROUP BY user_id

) agg
) foo;
—---
-
Subquery Scan on foo (cost=50005.01..50005.03 rows=1 width=32) (actual time=6325.727..6368.489
rows=1 loops=1)
 Output: jsonb_build_object('obj', foo.obj)
 -> Aggregate (cost=50005.01..50005.02 rows=1 width=32) (actual time=5503.496..5503.499 rows=1
loops=1)
 Output: jsonb_object_agg((..., (jsonb_object_agg(..., jsonb_build_object('total_time',...)
 -> HashAggregate (... (actual time=3535.802..4119.971 rows=10001 loops=1)...
Planning Time: 0.174 ms
Execution Time: 6412.477 ms

Tips & Tricks: JSONB
EXPLAIN (ANALYSE, VERBOSE) SELECT JSONB_BUILD_OBJECT('obj', obj) FROM (

SELECT JSON_OBJECT_AGG(user_id, tracked_obj) AS obj FROM (
SELECT user_id, JSON_OBJECT_AGG(team_id, JSON_BUILD_OBJECT('total_time', (random() *

1000)::int)) AS tracked_obj FROM (
SELECT (random() * 10000)::int AS user_id, (random() * 10000)::int AS team_id
FROM generate_series(1, 1000000)

) gen
GROUP BY user_id

) agg
) foo;
—---
-
Subquery Scan on foo (cost=50005.01..50005.03 rows=1 width=32) (actual time=3295.757..3345.740
rows=1 loops=1)
 Output: jsonb_build_object('obj', foo.obj)
 -> Aggregate (cost=50005.01..50005.02 rows=1 width=32) (actual time=1846.187..1846.190 rows=1
loops=1)
 Output: json_object_agg((..., (json_object_agg(..., json_build_object('total_time',...)
 -> HashAggregate (... (actual time=1765.143..1776.300 rows=10001 loops=1)...
Planning Time: 0.104 ms
Execution Time: 3355.383 ms

José Neves
 @rafalneves

DM Tech Lead at Toggl Track

Thank you.

